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Abstract 
Crowd simulation and visualization is an emergent research area that studies and repro-

duces this phenomenon on virtual environments. We present a system designed for simula-
tion and visualization of pedestrians in urban environments, this system is focused on solving 
problems such as rendering, character animation, artificial intelligence to deal with steering 
behaviors and motion planning of each pedestrian. The present work incorporates steering 
pedestrian behaviors using real data collected from several sources such as GPS traces and 
surveillance systems, all these data allows virtual characters to adapt their navigation accord-
ing to several environment factors such as other agents or obstacles. This kind of approach 
requires massive quantities of resources, such as data, memory and computation. We present 
a formulation that includes a multi-agent system that assigns individual characteristics, both 
physical and psychological to the virtual agents, which are based on data obtained from real 
pedestrians to better depict reality.  

The presented system is able to simulate crowds in complex urban environments; for that 
purpose the system was built in two stages, urban environment generation and pedestrian 
simulation, for the first stage we integrate the WRLD3D plug-in with real data collected from 
GPS traces, then we use a hybrid approach done by incorporating steering pedestrian behav-
iors with the goal of simulating the subtle variations present in real scenarios without needing 
large amounts of data for those low-level behaviors, such as pedestrian motion affected by 
other agents and static obstacles nearby.  

  
Keywords: crowd simulation, steering behavior, data driven simulation, urban envi-

ronments.  

 

Introduction 
The process of constructing virtual cities and populate them with virtual agents is increasing 
as a research area in computer graphics and artificial intelligence. Developing environments 
with intelligent agents implies several challenges, for instance, rendering thousands of objects 
within any given scene with geometric and topological variety is complex and many computa-
tional resources such as memory and processing power are required. A wide range of areas 
such as games movies, or urban simulation require virtual 3D city models with detailed ge-
ometry. 
Additionally, Agent-based simulation of credible actors in large-scale urban environments is 
a growing research domain, with numerous applications ranging from security to crisis man-
agement, entertainment, urban planning and virtual training [Navarro11]. Simulating hun-
dreds of thousands of individual agents within a very large environment like an airport, a 
crowded train or station or a whole mega city requires significant computational power. The 
generation of large urban environments typically involves different stages. Heavily simplify-
ing this model based on a fixed grid layout, a city of finite extent can be generated for a single 
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view on the CPU and rendered efficiently on a GPU. Level of detail techniques work properly. 
Those techniques tend to adapt the complexity of the 3D models based on the viewpoint of 
the observer by limiting the number of polygons displayed by the graphic engine in each 
frame of simulation. Therefore, meshes with a high polygon count often must be simplified to 
achieve acceptable display rates [Sullivan02]. 

Related Work 
The creation of urban environments involves a lot of different but related tasks such as the 
processing of geographic information, the visualization of crowds and the generation of steer-
ing behaviors [Silverira2006]. All above with the goal of producing a simulation useful and 
plausible. In the following paragraphs we discuss some of the relevant works that addresses 
the tasks enlisted previously. 

Geographic Information 
The rising of geographic information systems and data acquisition have led to increase the 
demand of visualization software in terms of 3D globe-based interfaces, consequently the 
need for develop algorithms to reconstruct 3D data using primarily 2D objects was increased 
in the same order. An example of this is the work presented by Essen which describes a 
method to produce 3D maps taking as a base 2D city maps containing relevant features. [Es-
sen2008], by using GPS traces we were able to extract urban and city information to create 
complex environments using real data and combining them with an interactive crowd, on fig-
ure 1 it can be seen a visualization of people’s average flow registered by GPS sensors, the 
greener the street, the higher the stream of people walking on the street. 
On the other hand, the work of Thomsen et al. [Thomsen2008] introduces a general ap-
proach for modeling in 3D GIS addressing the problem of using 3D data in comparison with 
traditional 2D and 2.5D and how the context of topological abstraction influences the result, 
depending on the operations to a certain set of data. Using a cell layout, hierarchies are creat-
ed, and geometry can have a mesh representation. 

Crowd Visualization 
The kind of videogames with detailed urban virtual worlds where the players can explore, and 
approach objectives freely has become a success in the market. The process of creating such 
environments also known as Open Worlds takes many hours of work. To face this scenario 
researchers have used procedural modeling via shape grammars with production rules that 
iteratively evolve a design by increasing the details. The main advantage of this kind of tech-
niques is that the creation of the hierarchical structure is specified in the modeling process. 
This semantic information allows to reuse design rules bringing forth procedural variations 
and then creating a large variety of architecture flooding a whole city. However, the comple-
tion of this process can take hours and consumes a huge amount of memory (tera-bytes of 
storage), when rendering a city like Manhattan, which consists of more than 100,000 build-
ings [Loviscach06]. 
 



 
Figure 1. Visualization of people’s average flow registered by GPS. 

 
Some researchers have introduced parallel architectures such as graphics processing unit 
(GPU). These works take into consideration account visibility and different level of detail. 
This way faster rendering is achieved. An adaptive level of detail is used as well and a dynam-
ic vertex buffer and index buffer that allows geometry to be generated at any point during 
grammar derivation on the GPU. It is important to address that this simulation must run at 
interactive frame rates (at least 30 frames per second). Thalmann and Boatright [Thal-
mann09, Boatright2013] stated that additional challenges such as Variety in both ap-
pearance and animation and behaviors. 
Steering Behavior 
Pedestrian steering behaviors or pedestrian motion involves the behavior of an individual by 
considering the other members of the crowd. According to Pettre [Pettre2009], steering 
has a big influence to get a plausible and a realistic crowd, and that is the main motivation 
behind being included as a part of the simulation workflow.  
To address steering behavior, researchers have proposed different approaches following two 
alternatives. The first one is to deal the crowd as macroscopic phenomena. In this case, the 
crowd is simulated by using PDEs (Partial Differential Equations) with physic models treat-
ing the crowd as a whole [Shinohara2011]. 
However, physics models have problems in simulating complex behaviors, since a fluid parti-
cle does not have a preferred direction of motion, does not have goals and cannot make deci-
sions [Dai2013]. An alternative to the macroscopic approach is to deal with every agent in 
the crowd individually. This approach is called microscopic. Among the microscopic algo-
rithms used to simulate dense crowds we have three main categories: vector based, agent 
based and data-driven techniques. One of the first research centered on microscopic simula-
tion of autonomous virtual agents and their steering behaviors was presented by [Reyn-
olds1987]. Several years later Helbing et al. presented the social forces model, where each 
agent tends to move at a desired velocity while applying friction and repulsion forces against 
obstacles and other agents [Helbing1995]. According to the authors, social forces are well 
suited for pedestrians in normal, or known, situations. The social forces model has been ex-
tended to support social groups of related pedestrians by Moussaïd et al. [Moussaid2010].  
These kinds of methods can produce realistic results for specific situations or do not provide 
group steering behaviors. To do so, many finely tuned specific rules are required. As an ex-
ample of the later, the work of [Lakoba2005] presented a modified version of Helbing's so-
cial force model proposed up to 24 parameters to set up. Sometimes tuning several parame-
ters is a challenging task and often requires a lot of trial and error, this being an impediment 



to using this kind of methods for authoring tools. Particularly in the cases when it is necessary 
to add new behaviors and a new set of rules needs to be defined. Data-driven techniques gen-
erate behavior models by recording real pedestrian trajectories in video sequences. This ap-
proach generates several example situations and actions for the characters. Lerner et al. 
[Lerner2007] used video samples to construct a large example database. This database 
contains the data necessary to simulate individual trajectories. The amount of memory re-
quired to store the examples it ranges between 50MB to 150 MB. Containing up to 42K of tra-
jectories. On the other hand, Lee et al. [Lee2007] used the environment and the motion of 
nearby agents observed in video sequences to determine the moving trajectories of each 
simulated agent. Focusing its work on recreating groups dynamics rather than individual 
steering. In addition [Sun2011] presented a data-driven collision avoidance algorithm and 
recently Charalambous et al. [Charalambous2014] presented a method for the synthesis of 
steering behaviors by abstracting the pedestrians steering behaviors in a structure called per-
ception-action graph. Data-driven works usually don't model social group behavior and when 
they do the database grows significantly. In conclusion, data-driven models create very realis-
tic results but require many examples and large amounts of memory to cover the complexity 
of social human behavior. 

Data Driven Crowd Visualization on Urban Areas 

Architecture 
As mentioned before, the process of creating a complex urban environment is not a trivial 
task, many variables are involved in the process. Computational resources must be addressed 
when creating large scenes in consequence memory consumption becomes bigger for every 
additional element added to the virtual world. Nevertheless, memory is not the only problem, 
since these scenarios also consider high density crowds within, thus the time consumed by 
processing the simulation must be properly bounded to ensure an acceptable performance. 
Our goal in this proposed workflow is to ensure the simulation and the visualization of the 
virtual urban environment runs at interactive frame rate (at least 30 frames per second), to 
achieve this we divide this task in two different stages, the simulation stage and visualization 
stage, the completion of these two stages allows to the system to generate a plausible urban 
environment into the simulation. 
 

 
Figure 2. Visualization Engine Architecture. 

 



Figure 2 gives an overview on how the pipeline is currently working, we make our simulations 
using a webserver which allows to communicate within the application to fetch and process 
important data. The client initializes local map information to construct the environment, 
here we load all the requirements and begin the simulation, for instance, we fetch the OSM 
(Open Street Map) 3D map and the output is sent to the server where data is synchronized 
and get the final render. Figure 3 shows an example of the depth buffer also known as Z-
buffer, this buffer is generated by rendering an extruded scene from the urban environment. 
 

 
Figure 3. Z-buffer generated from OSM data. 

 
Under this conception our client (a web browser) is used to visualize the urban crowd, there-
fore our server will be a dedicated process running the crowd simulation in an urban map 
scene. The server process uses web-sockets to establish a communication channel between 
the server and the browser, the general idea of communication between server and client is 
depicted in figure 2. On the following section we detail the jobs performed both by the client 
and the server. 

Client Pipeline 
In the client side we have coded a script in a web page that uses a lightly modified version of 
open Source Tangram, which is a visualizer of urban environments in 3D, using Open Street 
Maps (OSM) geometry as input. The output is an interactive version of a city using real world 
information, which allows the users to navigate freely in the environment, our main focus in 
this stage is to synchronize the camera with the information that is displayed and merge it 
with our simulation, whenever the user applies any transformation to the camera, (i.e rota-
tion or translation) we extract the depth buffer (DBF) of the scene, we also retrieve the scale 
in pixels per meter of the current zoom level, the 2D position relative to the current map, and 
the RGB of that specific frame. This is used to reconstruct the scene later and composite it 
with the crowd. 



Server Pipeline 

The server side is the one that performs all the important data processing, all the process 
starts when the master process initializes the simulation and render parameters, the slave 
processes are also initialized, and will be running and simulating a predefined Map (in this 
case a part of an arbitrary city). The master process will spawn a server process with the web 
sockets protocol listening for a client. When the client performs a connection with the server, 
the initial simulation parameters are processed (world map position the most important). Af-
ter that, the slave processes are taken from the idle state to a simulation state, the relative 
camera position and important data are loaded from the sent client frame buffer and the 
camera position is distributed from the master process to the slave process of the camera, 
along with other necessary render parameters. This scene is rendered from every slave pro-
cess camera’s point of view to a texture. The rendered scenes textures are sent to the master 
process, and the image composition is performed by the master process. Finally, the output 
render is sent to the client by the server process, all this will be repeated in an infinite loop 
until the client close the current connection or a prudent time without response from the cli-
ent will be expired. 

Scene Compositing 
Compositing in OpenGL is a straightforward process and its implementation on the GPU 
shading language also. To create a compositing we only need a fragment shader that writes 
the depth and the output color of every screen pixel for each composited image in our pipe-
line; as an example if we have 𝐧 processes rendering a part of a crowd in a separated Frame 
Buffer Object (FBO) to a texture along with its depth buffer, the master process will take each 
one of the output render textures and will render 𝐧 times simply writing the depth value 
(usually glFragDepth ) and the texture output color using the GL DEPTH TEST option ena-
bled to allow the render automatically discard the all the fragments, with exception of the 
closest one written by the master process, on figure 4 we have the Join of two computational 
jobs to obtain a composite image, the first component corresponds to the output of four par-
tial rendering processes of the crowd characters and the second one corresponds to the pro-
cess that generates the background. 
 

 
Figure 4. Join of two computational jobs yielding a composite image. 



Visualization of urban environment 
There are several techniques employed to create complex urban scenarios, some use a de-
tailed model generated from scans and photographs, some others simply use extrusion to 
generate buildings of the appropriate height from the contours in the 2D map and height in-
formation. We chose to use “MapzenTangram”, where as stated in its manual, we can gener-
ate extruded buildings by using a function that applies to polygons and lines, and returns 
such features drawn with the polygons draw style into 3D space along the 𝑧 − 𝑎𝑥𝑖𝑠. this func-
tion raises elements drawn with the lines draw style straight up from the ground plane, using 
the values in the feature’s ℎ𝑒𝑖𝑔ℎ𝑡 and minheight properties. Our web application will call 

Mapzen Tangram to generate an appropriate 3D view of the city, using extrusion, whenever 
the mouse is moved. from this view, we generate the color and depth buffers by rendering (as 
explained in the following). these buffers and the appropriate camera parameters are used to 
generate the rendering of the crowd and generate the final composite image. 
Data Driven Steering Behavior 
Finally, to make each pedestrian inside the virtual environment move realistically, we need a 
system able to simulate the subtle variations on the steering behavior of pedestrians without 
needing large amounts of data, we extracted from videos the steering movements of pedestri-
ans and store them as examples to create a knowledge base of learned steering behaviors. To 
model social group phenomena, we used group social forces proposed by Moussaïd [Mous-
said2010]. In this manner, we get the best features of both models. 
Knowledge Base Conformation 
The first goal of the process is to obtain from the video a record of each path followed by each 
pedestrian. Each path is processed and later use to create a data structure for store these 
steering behaviors. We use a video shot looking directly down on the subject, also called 
bird’s eye view shot. This view is chosen to avoid occlusions and artifacts in the tracked paths 
usually caused by inconsistent mappings between the real world and the image coordinates. A 
general plane to plane projective mapping is given by the equation: 
 

𝑥 =
𝑎𝑢+𝑏𝑣+𝑐

𝑔𝑢+ℎ𝑣+𝑖
;  𝑦 =

𝑑𝑢+𝑒𝑣+𝑓

𝑔𝑢+ℎ𝑣+𝑖
      Eq. 1 

 
From the above (𝑢, 𝑣) represents world coordinates, (𝑥, 𝑦) correspond to images coordinates, 
and “𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖” are calibration constants. Using a top-down shot the equation 1 tends 
to be closer to: 

𝑥 = 𝑎 ∗ 𝑢;  𝑦 = 𝑒 ∗ 𝑣      Eq. 2 
 
The scene is split into background and foreground using the codebook algorithm 
[Schreiber2009]. Foreground regions are considered region of interest “ROI”. These ROIs 
are passed one by one to an LBP feature extraction module and then are classified as human 
head or not. Once a human head is detected, a point is associated with it. Each detected point 
is tracked over every frame using the pyramidal version of the Lucas-Kanade tracker imple-
mented on the OpenCV library (see figure 5), The pipeline of human tracking starts with top 
view shots. then the human heads are segmented and tracked to get the path of every pedes-
trian in the scene. 
 



 
Figure 5. Human tracking pipeline. 

 
A trajectory of each pedestrian 𝜏𝑘is defined as a set of 𝑁 displacements 𝛿𝑖 from position 
𝑃𝑖(𝑥𝑖, 𝑦𝑖) to 𝑃𝑖+1(𝑥𝑖+1, 𝑦𝑖+1). In consequence each displacement 𝛿𝑖 is given by: 
 

𝛿𝑖 = (𝑥𝑖+1 − 𝑥𝑖 , 𝑦𝑖+1 − 𝑦𝑖)      Eq. 3 
 
Therefore 𝜏𝑘 is conformed as: 
 

𝜏𝑘 = {𝛿0, 𝛿1, … , 𝛿𝑁}       Eq. 4 
 
Once all the trajectories have been collected, the next step is to extract a tuple of set of fea-
tures and actions to build the behavior cores [Lee2007]. We propose a set of 3 features 
which have strong influence in the steering decision of a pedestrian: normalized pedestrian 
velocity, closeness to goal and obstacle code. 
 
Before explaining how to get the normalized pedestrian velocity, we need to describe how to 
get the goal vector, which is expressed in the following equation: 
 

𝒈𝒐𝒂𝒍 = ∑ 𝜹𝒊
𝑵
𝒊=𝟎       Eq.5 

The data we have collected is made of a wide range of starting points and destinations of each 
pedestrians. To better deal with each agent's decision-making process, is necessary normaliz-
ing the vectors that describe movement. Given the fact that the goal vector is defined as the 
sum of the partial displacement of a pedestrian, we decided to transform the global coordi-
nate system obtained in the tracking visual phase to a local one, offsetting all displacements 
to make the goal vector pointing toward the local “y” axis. Therefore, given a goal vector, we 
use a vector 𝑒2̂ = (0,1)to get a normalization angle, which is the angle needed to align the goal 
vector with “y” axis. We call it a normalization angle which is calculated using the following 
equation: 
 

𝜂 = 𝑐𝑜𝑠−1 (
𝑒̂2×𝑔𝑜𝑎𝑙

|𝑒̂2|×|𝑔𝑜𝑎𝑙|
)eq. 6 

 



Given a vector displacement 𝛿. The normalized version 𝛾 of that vector according to angle 𝜂 is 
given by the following expression: 
 

𝛾⃗ = |
𝛿𝑥 × 𝐶𝑜𝑠(𝜂) − 𝛿𝑦 × 𝑆𝑖𝑛(𝜂)

𝛿𝑦 × 𝐶𝑜𝑠(𝜂) − 𝛿𝑥 × 𝑆𝑖𝑛(𝜂)
|     Eq. 6 

 
Therefore, once we calculate the normalized angle, the goal vector is rotated or normalized 
using equation 6. Producing the goalN, notice the new vector has no “x” component due to 
normalization. See figure 6. 
 

 
Figure 6. This figure shows on the left a path obtained from the tracking  

process, on the right the normalized version. 
 
The second feature is the velocity, this factor comprises the rate of change of time, 𝛥𝑡 of the 
displacement of the pedestrian as a function of time. The velocity given by equation 7 pro-
vides part of the component of behaviors that describe collision avoidance. 
 

𝑣⃗𝑖 =
𝛾𝑖+1−𝛾𝑖

Δ𝑡
       Eq. 7 

 
Once the velocity has been calculated it is reoriented by the normalization angle 𝜂. From here 
we will call as 𝜙𝑖to all the velocity vectors normalized using equation 6. 
The next feature is the closeness to goal, this feature outlines how close (in percentage) the 
pedestrian is from its current position to the destination observed in the trajectory dataset. 
The closeness to goal factor is defined by: 

𝜎𝑖 =
𝛾𝑖⃗⃗⃗⃗  ∙ 𝑔𝑜𝑎𝑙𝑖

𝑔𝑜𝑎𝑙𝑖𝑥
2 +𝑔𝑜𝑎𝑙𝑖𝑦

2       Eq. 8 

This feature is important in our model given the fact that it affects directly the steering behav-
ior of a pedestrian making able to a virtual pedestrian to react differently when is close to its 
goal. 
 
The last feature that makes up our state vector is the obstacle code. 
The obstacle code 𝜑 is a factor that is calculated by using eight discrete radial regions. This 
kind of subdivision has been frequently used to capture the influence of the neighborhood in 
data-driven approaches [Torrens2011]. Perceptual studies have demonstrated that regions 
toward the intended direction have a larger radius of influence on the trajectory of pedestri-
ans [Lerner2007] that fact lead us to introduce a slight difference consisting on increment-
ing the radius of the section pointing toward the direction of pedestrian's motion (see figure 
7). The angle of obstruction 𝛽 of a pedestrian 𝑗 in the neighborhood of a pedestrian 𝑖 walking 
at a velocity 𝒗𝒊 is given by: 



𝛼 = 𝑎𝑡𝑎𝑛2(𝑒𝑖,𝑗 𝑥, 𝑒𝑖,𝑗 𝑦) − 𝑎𝑡𝑎𝑛2(𝑣⃗𝑖𝑦, 𝑣⃗𝑖𝑥)     Eq. 9 

 

𝛼1 = {
𝛼 + 2 ∙ 𝜋   𝛼 < 0

𝛼 𝛼 ≥ 0
      Eq. 10 

  

 
Figure 7. The space around the agent establish the obstacle code 𝜑. 

 
From the equation 9, the 𝑒𝑖𝑗 vector is pointing from pedestrian 𝑖 to 𝑗. With the angle of ob-

struction 𝛼1 the next quadrant adjustment is performed: 
 

𝛽 =

{
 
 

 
 𝛼1 +

𝜋

2
𝛼1 <

𝜋

2

−1
𝜋

2
≤ 𝛼1 <

3𝜋

2

𝛼1 −
3𝜋

2
𝛼1 ≥

3𝜋

2

      Eq. 11 

 
Finally, the quadrant obstructed by pedestrian 𝑗 is: 
 

𝜑 = ⌈
8×𝛽

𝜋
⌉        Eq. 12 

 
The set of features 𝜙𝑥 , 𝜙𝑦, 𝜎, 𝜑, 𝐴𝑥, 𝐴𝑦define a state vector 𝑆𝑖 (see Eq. 13). In this case 

𝐴𝑥, 𝐴𝑦forms a 2D vector which represents the motion performed by the pedestrian, also 

known as a pedestrian’s state vector. All the vectors 𝑆𝑖which match the same goal 𝑔𝑜𝑎𝑙𝑘 are 
packed in a look-up table 𝛬𝑚 see Eq. 14. 
 

𝑆𝑖⃗⃗⃗ ⃗ = [Φ𝑖𝑥, Φ𝑖𝑦, 𝜎, 𝜑, 𝐴𝑥, 𝐴𝑦]      Eq. 13 

 

Λ𝑚 = [𝑆0, 𝑆1, … , 𝑆𝑁]      Eq. 14 

 
Therefore table 𝛬𝑚 represents our knowledge-base. The input for the knowledge base will be 
a state S, the system finds the closest match between the incoming state vector inside the 

knowledge-base. Once we have a match, the system returns the action vector (𝐴𝑥, 𝐴𝑦). 

Social Data Driven Simulation Model 
Finally, the resulting steering vector of a pedestrian is modeled according to equation 15. The 
A component of the steering force is given by the knowledge base as a function of the pedes-



trian state presented in the simulation. The rest of the components are given by 𝑓𝑖
𝑔𝑟𝑜𝑢𝑝

 which 

is the last component of the Moussaïd model of group social forces [Moussaid2010]. 
This fact allowed us to avoid demanding more memory resources to store persistent data re-
lated to group formations in the knowledge base. We chose the group force equation present-
ed by Moussaïd because reproduces faithfully the group formations in pedestrians. 
 

𝑑𝑣𝑖⃗⃗⃗⃗

𝑑𝑡
= 𝐴 + 𝑓𝑖

𝑤𝑎𝑙𝑙 + ∑ 𝑓𝑖,𝑗𝑗≠𝑖 + 𝑓𝑖
𝑔𝑟𝑜𝑢𝑝

    Eq. 15 

Results 

Crowd Visualization 
For our experiments we execute the simulation and visualization process in a workstation 
with these characteristics: Intel Core i7-4820zK CPU @ 3.70GHz 8, 16Gb of RAM, GeForce 
GTX TITAN Black, 2880 CUDA Cores and 6Gb of RAM. 
Since our simulation engine was developed previously, it is ready to be executed in a cluster 
environment. However, for this paper, and to have a better control of the environment, avoid-
ing inter-node communication problems, we focus in the integration of the urban scenarios, 
and present results obtained by running both client and server in the same workstation. We 
execute the simulation with five, ten and seventeen “mpi” processes. One of them manage 
the urban environment and do the composition, the rest are used to simulate and render the 
agents. All 
the client-side interaction and scripts where developed and tested in Google Chrome for 
Linux. 
The maximum number of agents in the simulation is restricted to the GPU’s memory, in this 
workstation the limit was 80000 agents. 
Each frame the simulation engine updates the agents positions to be subsequently rendered 
as full characters way by the visualization engine, as shown in Figure 8 and 9. We still have 
some work to do in improving the quality of the renders in the client side without making the 
latency increase. Our tests have been tried with a better-quality render in the client’s side, but 
the latency generated by the texture capture cycles, affects negatively the client’s user experi-
ence and generates a set of artifacts in the client side because of large render cycles. 
 

 
Figure 8. Visualization of the city from an aerial view. 

 



 
Figure 9. Final render that includes the city and the pedestrians. 

Steering Behavior 
Aiming to evaluate the simulation of the pedestrian steering motions, we employ a metric 
based on entropy as a measure of the size of the predicted error.  
In the scientific community, one can find several proposals for evaluating the quality of a 
crowd simulation. Some of the existing work focuses on evaluating crowds based on quantify-
ing the extent to which people respond realistically to virtual events and situations [Pel-
echano2008]. A similar perception-like proposal is presented by Ahn et al. [Ahn2012] 
who conducted a test user study in a four-screen CAVE to compare different crowd simula-
tions. Other proposals such as Kapadia [Kapadia2011] use a set of metrics based on path 
smoothness, collisions between virtual characters and path lengths.  
Previous approaches were designed to compare the results in synthetic environments but are 
not suitable to be used to compare the similarity between a simulation and the real behavior 
of a pedestrian by the other hand the entropy has proven to be applicable to data generated 
with small and large number of pedestrians in sparse and dense scenes [Guy2012].  
The measure of entropy is defined as follows: Given a state of a real scene 𝑍𝑘 the difference 
between the action vector𝐴(𝑍𝑘) and the next state 𝑍𝑘+1is calculated giving an entropy vector. 
In this case the total entropy for a given path is calculated using equation 16. In this case, the 
smaller the entropy the better the simulation. 
 

𝐸𝑛 = ∑ ‖𝑍𝑘+1 − 𝐴(𝑍𝑘)‖
𝑁
𝑘=0       Eq. 16 

 
We ran a test measuring the entropy for a single path followed by a pedestrian again different 
simulation models: vector based, data-driven based and our hybrid model (Fuzzy data-driven 
with group forces “FDDGF”), we called this test “Single Agent Entropy” the result of this test 
is presented in figure 10 where the sample size was of fifty random pedestrians walking alone. 
 

 
Figure 10. Single Agent Entropy Test with 50 pedestrians. 

 



Our system ranked in the second place (The lower the better) just slightly above over pure da-
ta driven techniques (example based). It is a matter of fact that Data-driven methods closely 
reflect the behavior of pedestrians in real scenes, but a major drawback in this approach is 
that they require large amounts of data and scaling those systems sometimes becomes unfea-
sible. On the other hand, vector-based methods and rule-based methods demand less 
memory but they need hard fine-tuning parameters that govern agent behaviors, which can 
be a very demanding task.  
The second test we ran was quite similar to the first one but instead of having one pedestrian, 
the scene was composed of many individual pedestrians not belonging to any group. These 
results can be seen in Figure 11.  
 

 
Figure 11. Crowd Entropy Test. 

 
In this simulation of crowds without social group formations again the data-driven method 
achieves the best result meanwhile our method reaches the second place on the low entropy 
measures just slightly below the example-based method which consumes more data. 
 
The last test done was in scenes where social groups up to 4 people are presented. We called 
this test “Crowds with social groups” (Figure 12), on this test our method achieves the best 
result getting close to data-driven techniques, but also the data-driven presents the best re-
sults. 
 

 
Figure 12.  Crowd with Social Groups. 



Conclusions 
Our experiments show that mixing data-driven methods with group forces allow us to achieve 
results comparable to those obtained with data-driven systems but using less memory and 
avoiding fine tuning parameters jobs. Figure 13 shows the comparison of our method again 
the above mentioned in terms of number of parameters and memory that make our system 
usable even in devices with limited memory and computational power. 
 

 
Figure 13. Data Consumption Comparison. 

 
The simulation generated by our method produces a steering behavior learned from real vid-
eos, resulting in similar trajectories to those observed in real pedestrian steering. Our Data-
Driven technique allow us to get plausible results since the system captures some of natural 
movements presented in real scenes 
 
Crowd simulation is a field that is constantly challenging and testing graphics hardware since 
most of the times the available resources are not enough to simulate a crowd without any op-
timization technique, such as LOD or compositing. This field demands a lot of computational 
power and resources, so an efficient way to assign memory and processing power is mandato-
ry to achieve the desired results. Applications for virtual city generation range from research 
and educational purposes such as urban planning and creation of virtual environments for 
simulation. Movie and game industries have a high demand for quick creation of complex en-
vironments in their applications, since they are in constant need for more art assets that form 
virtual worlds to support interaction, training, evaluation, virtual sets, and other uses. Securi-
ty, crisis management and virtual training can take advantage of this environments as well. In 
the present work we described a workflow able to visualize and simulate 80000 agents per 
frame inside an urban environment, we incorporate steering behavior to each pedestrian, and 
GPS information to manage the flow of people inside the urban environment. The future 
steps will consist in add realism to the buildings rendering. 
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